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Graphs considered here are simple and undirected.

Let G be a graph of order n with vertex set V (G ) = {v1, v2, . . . , vn}
and edge set E (G ). Let d1 ≥ d2 ≥ d3 ≥ . . . ≥ dn be the degree
sequence of G .

Graph Matrices:

Adjacency matrix: A(G ) := [aij ]n×n , aij =

{
1 if vivj ∈ E (G );
0 otherwise.

Degree diagonal matrix: D(G ) := diag(d1, d2, . . . , dn).

Laplacian Matrix: L(G ) := D(G )− A(G ).

Signless Laplacian Matrix: Q(G ) := D(G ) + A(G ).
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Adjacency spectrum:λ1 ≥ λ2 ≥ . . . ≥ λn.

Laplacian spectrum : µ1 ≥ µ2 ≥ . . . ≥ µn = 0.

Signless Laplacian spectrum : γ1 ≥ γ2 ≥ . . . ≥ γn.
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Adjacency Cospectral Graphs (A-cospectral graphs): Two graphs
are adjacency cospectral (or simply, cospectral) if they share the
same adjacency spectrum.

Figure 1: Adjacency copsectral graphs of smallest order with adjacency
spectrum {2, 0, 0, 0,−2}
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Laplacian Cospectral Graphs (L-cospectral graphs): Two graphs are
Laplacian cospectral if they share the same Laplacian spectrum.

Figure 2: Laplacian copsectral graphs of smallest order with Laplacian
spectrum {5.236, 3, 3, 2, 0.764, 0}
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Signless Laplacian Cospectral Graphs (Q-cospectral graph): Two
graphs are signless Laplacian cospectral if they share the same sign-
less Laplacian spectrum.

Figure 3: Signless Laplacian copsectral graphs of smallest order with
Q-spectrum {4, 1, 1, 0}
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Figure 3: Signless Laplacian copsectral graphs of smallest order with
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I A graph G is said to be determined by the adjacency
spectrum (simply, DAS) if G has no A-cospectral mate up to
isomorphism.

I A graph G is said to be determined by the Laplacian spectrum
(simply, DLS) if G has no L-cospectral mate up to
isomorphism.

I A graph G is said to be determined by the signless Laplacian
spectrum (simply, DQS) if G has no Q-cospectral mate up to
isomorphism.
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Fig. 1, 2 and 3 gives the smallest (with respect to order and size)
pair of cospectral, L-cospectral and Q-cospectral graphs. Thus

• Graphs having less than five vertices are DS .

• Graphs having less than six vertices are DLS .

• Graphs having less than four vertices are DQS .



Fig. 1, 2 and 3 gives the smallest (with respect to order and size)
pair of cospectral, L-cospectral and Q-cospectral graphs. Thus

• Graphs having less than five vertices are DS .

• Graphs having less than six vertices are DLS .

• Graphs having less than four vertices are DQS .



Fig. 1, 2 and 3 gives the smallest (with respect to order and size)
pair of cospectral, L-cospectral and Q-cospectral graphs. Thus

• Graphs having less than five vertices are DS .

• Graphs having less than six vertices are DLS .

• Graphs having less than four vertices are DQS .



Which graphs are determined by their spectra?

This is a classical question posed by Günthard and Primas [14] in
the year 1956.

The motivation for the question comes from Chemistry (Hückel
Molecular Theory).

In 2003, Dam and Haemers gave a survey of (partial) answers to
the question, see [9]. Since then the problem has attracted many
researchers and in recent years several papers on this problem have
been published.

Developments on spectral characterizations of graphs with respect to
adjacency spectrum and (signless) Laplacian spectrum until 2008 are
reported in the following two survey articles by Dam and Haemers.
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The following is one of the basic lemma widely used in the study
of characterization of graphs with respect to spectrum (adjacency
spectrum and (signless) Laplacian spectrum).

Lemma [9] For the adjacency matrix, the Laplacian matrix and the
signless Laplacian matrix of a graph G , the following can be deduced
from the spectrum:

• The number of vertices.

• The number of edges.

• Whether G is regular.

For the adjacency matrix the following follows from the spectrum:

• The number of closed walks of any fixed length.

• Whether G is bipartite.

For the Laplacian matrix the following follows from the spectrum:

• The number of components.

• The number of spanning trees.
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Let M be a Hermitian matrix of order m and let θ1(M) ≥ θ2(M) ≥
· · · ≥ θm(M) be its eigenvalues.

Theorem [17] Let M be a Hermitian matrix of order n.

I Interlacing: If Mk is a principal submatrix of M of order k with
1 ≤ k ≤ n, then for 1 ≤ i ≤ k , θn−k+i (M) ≤ θi (Mk) ≤ θi (M).

I Weyl’s inequality: If M = N + P, where N and P are
Hermitian matrices of order n. Then for 1 ≤ i , j ≤ n, we have

• θi (N) + θj(P) ≤ θi+j−n(M) (i + j > n);
• θi+j−1(M) ≤ θi (N) + θj(P) (i + j − 1 ≤ n).
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Which graphs are DAS?

Proposition [9] The complete graph Kn,the complete bipartite graph
Km,m and the Cycle graph Cn are determined by the adjacency spec-
trum.

Note that the graph K4,4 ∪ 2K1 and K8,2 are cospectral.
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The following theorem is proved in [9].

Theorem
The Path graph Pn is determined by the adjacency spectrum.

Proof: Let G be a graph cospectral with Pn.

I Spectrum of Pn is 2 cos

(
jπ

n + 1

)
, j = 1, 2, . . . , n.

⇒ λ1(G ) < 2.

∴ By interlacing theorem, G has no cycles (because λ1(Ck) = 2).

I Thus G is a forest. Further, since G has n − 1 edges. G must
be a tree.

I Claim: ∆(G ) ≤ 2.

• Since λ1(K1,4) = 2 and λ1(G )) < 2.By interlacing theorem, it
follows that K1,4 is a forbidden subgraph of G .

• Thus ∆(G ) ≤ 3.
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• If G has at least two vertices of degree 3. Then G has the
following graph as its subgraph.

• This is not possible, because the graph shown in the above
figure has 2 as its eigenvalue.

• If G has one vertex of degree 3. Then G must be isomorphic
to the graph shown in the following figure.
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• Now one can check that number of closed walks of length 4 in
Pn is not same as that of G , a contradiction.

I Thus ∆(G ) = 2.

∴ G is a tree on n vertices and ∆(G ) = 2.

I Hence G ∼= Pn. This completes the proof.

The following result is due to Doob and Haemers.

Theorem [12] The complement of the path graph is determined by
its adjacency spectrum.
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Graphs with small spectral radius that are DAS

• In [33], Smith determined all connected graphs with spectral radius at most
2. This includes the cycle Cn, Pn and the graphs shown in the following
figure.

• In [32], Shen et al. proved that all connected graphs with spectral radius
less than 2 are DAS .
• Among all connected graphs with spectral radius 2, the cycle graph, E 7,
E 8 are DAS.
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Some special graphs that are DAS

Theorem (R. Boulet and B. Jouve [3]) The lollipop graph is DAS.

Adjacency spectral characterization of
lollipop graphs were first consider by
Heamers, Liu and Zhang in [15] and it
was shown that the lollipop graph with
odd cycle is DAS.

Theorem [34] The kite graph is DAS.



Theorem [4] The corona product of an odd cycle and an isolated
vertex is DAS.

Theorem [27] The sandglass graph is DAS.

Theorem [21] The graph Kn\Pk is DAS.

In 2014, Cámara and Haemers [6]
conjectured that Kn\Pk is DAS
and they succeeded in proving it for
2 ≤ k ≤ 6.
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Which graphs are DLS?

Simple graphs that are DLS :

• The complete graph Kn.

• The path graph Pn.

• The cycle Cn.

• The complete bipartite graph Km,m.

Lemma [7] Let G be a graph on n vertices then the Laplacian
spectra of G = {n − µ1(G ), n − µ2(G ), . . . , n − µn−1(G ), 0}.

Proposition [10] A graph G is DLS if and only if G is DLS .

Corollary The complement graph of path graph is DLS .
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The lollipop graph is DLS.

The lollipop graph, denoted by Hn,p is obtained by appending a cycle
Cp to a pendant vertex of a path Pn−p.

Lemma [19] Let G be a graph on n vertices. Then

∆(G ) + 1 ≤ µ1 ≤ max
{du(du + mu) + dv (dv + mv )

du + dv
, uv ∈ E (G )

}
where ∆(G ) denotes the maximum vertex degree of G , µ1 denotes
the largest Laplacian eigenvalue of G , mv denotes the average of
the degrees of the vertices adjacent to vertex v in G .

Theorem [15] The lollipop graph Hn,p is LDS .

Proof Let G be a graph L-cospectral with Hn,p.
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I Using the above lemma, we get µ1(Hn,p) ≤ 4.8. Thus
µ1(G ) ≤ 4.8.

So, from the left inequality of the above lemma,
we see that ∆(G ) ≤ 3.

I Let x , y and z be the number of vertices of G of degree 1, 2,
and 3, respectively. Since the order n, the edges (=n) and the
sum

∑n
i=1 d

2
i (= 4(n − 2) + 9 + 1) are determined by the

Laplacian spectrum, we must have

I

x + y + z= n

x + 2y + 3y= 2n

x + 4y + 9y= 4(n − 2) + 9 + 1.

I Solving the above system of equations,we get x = 1,
y = n − 2 and z = 1.

I Thus G ∼= Hn,q.

I Now since the number of spanning trees is determined by the
Laplacian spectrum, we must have p = q.

I Hence G ∼= Hn,p. This completes the proof.
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Some other classes of graphs that are studied for Laplacian spectral
characterization are Starlike trees [29]; double starlike trees [24];
multi-fan graphs in [22]; complete-split graph [11], butter-fly graph
[20], etc.



Which graphs are DQS?

Lemma [8] If G is a bipartite graph then its Q-spectrum is same as
L-spectrum.

Theorem The path graph is DQS.
Proof Let G be a graph Q-cospectral with Pn.

I The Q-spectrum of Pn is 2 + 2 cos

(
iπ

n

)
, i = 1, 2, . . . , n.

I γ1(G ) < 4.

I Now, if G has a cycle then by interlacing theorem, we get
γ1(G ) ≥ 4.

I Thus G is bipartite.

I Therefore by above lemma G is L-cospectral with Pn.

I Hence G ∼= Pn. (Since Pn is DLS). This completes the proof.
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In literature some special graphs are proved to be determined by the
spectra for example the lollipop graph [37], short kite graph [34],
complete split graph [11], sun graph [28], fan graph [23], etc.

Recently, (signless) Laplacian spectral characterization of disjoint
union of graphs have been studied and also the problem of character-
izing join graphs which are determined by their (signless) Laplacian
spectra is considered, see [16, 26, 30, 36, 25, 1, 31] for more details.
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