Weekly e-seminar on "Graphs, Matrices and Applications"-IIT Kharagpur

Some Graphs Determined By Their Spectra

Dr. RAKSHITH B. R.
Assistant Professor
Department of Mathematics
Vidyavardhaka College of Engineering, Mysuru, Karnataka

Friday $27^{\text {th }}$ August, 2021

Graphs considered here are simple and undirected.

Graphs considered here are simple and undirected.
Let G be a graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Let $d_{1} \geq d_{2} \geq d_{3} \geq \ldots \geq d_{n}$ be the degree sequence of G.

Graphs considered here are simple and undirected.
Let G be a graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Let $d_{1} \geq d_{2} \geq d_{3} \geq \ldots \geq d_{n}$ be the degree sequence of G.
Graph Matrices:
Adjacency matrix: $A(G):=\left[a_{i j}\right]_{n \times n}, a_{i j}=\left\{\begin{array}{cc}1 & \text { if } v_{i} v_{j} \in E(G) ; \\ 0 & \text { otherwise. }\end{array}\right.$

Graphs considered here are simple and undirected.
Let G be a graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Let $d_{1} \geq d_{2} \geq d_{3} \geq \ldots \geq d_{n}$ be the degree sequence of G.
Graph Matrices:
Adjacency matrix: $A(G):=\left[a_{i j}\right]_{n \times n}, a_{i j}= \begin{cases}1 & \text { if } v_{i} v_{j} \in E(G) \text {; } \\ 0 & \text { otherwise. }\end{cases}$
Degree diagonal matrix: $D(G):=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.

Graphs considered here are simple and undirected.
Let G be a graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Let $d_{1} \geq d_{2} \geq d_{3} \geq \ldots \geq d_{n}$ be the degree sequence of G.
Graph Matrices:
Adjacency matrix: $A(G):=\left[a_{i j}\right]_{n \times n}, a_{i j}= \begin{cases}1 & \text { if } v_{i} v_{j} \in E(G) \text {; } \\ 0 & \text { otherwise. }\end{cases}$
Degree diagonal matrix: $D(G):=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
Laplacian Matrix: $L(G):=D(G)-A(G)$.

Graphs considered here are simple and undirected.
Let G be a graph of order n with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Let $d_{1} \geq d_{2} \geq d_{3} \geq \ldots \geq d_{n}$ be the degree sequence of G.
Graph Matrices:
Adjacency matrix: $A(G):=\left[a_{i j}\right]_{n \times n}, a_{i j}=\left\{\begin{array}{lc}1 & \text { if } v_{i} v_{j} \in E(G) \text {; } \\ 0 & \text { otherwise. }\end{array}\right.$
Degree diagonal matrix: $D(G):=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
Laplacian Matrix: $L(G):=D(G)-A(G)$.
Signless Laplacian Matrix: $Q(G):=D(G)+A(G)$.

Adjacency spectrum: $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$.

Adjacency spectrum: $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$.
Laplacian spectrum : $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}=0$.

Adjacency spectrum: $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$.
Laplacian spectrum : $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n}=0$.
Signless Laplacian spectrum : $\gamma_{1} \geq \gamma_{2} \geq \ldots \geq \gamma_{n}$.

Adjacency Cospectral Graphs (A-cospectral graphs): Two graphs are adjacency cospectral (or simply, cospectral) if they share the same adjacency spectrum.

Adjacency Cospectral Graphs (A-cospectral graphs): Two graphs are adjacency cospectral (or simply, cospectral) if they share the same adjacency spectrum.

Figure 1: Adjacency copsectral graphs of smallest order with adjacency spectrum $\{2,0,0,0,-2\}$

Laplacian Cospectral Graphs (L-cospectral graphs): Two graphs are Laplacian cospectral if they share the same Laplacian spectrum.

Laplacian Cospectral Graphs (L-cospectral graphs): Two graphs are Laplacian cospectral if they share the same Laplacian spectrum.

Figure 2: Laplacian copsectral graphs of smallest order with Laplacian spectrum $\{5.236,3,3,2,0.764,0\}$

Signless Laplacian Cospectral Graphs (Q-cospectral graph): Two graphs are signless Laplacian cospectral if they share the same signless Laplacian spectrum.

Signless Laplacian Cospectral Graphs (Q-cospectral graph): Two graphs are signless Laplacian cospectral if they share the same signless Laplacian spectrum.

Figure 3: Signless Laplacian copsectral graphs of smallest order with Q-spectrum $\{4,1,1,0\}$

- A graph G is said to be determined by the adjacency spectrum (simply, DAS) if G has no A-cospectral mate up to isomorphism.
- A graph G is said to be determined by the adjacency spectrum (simply, DAS) if G has no A-cospectral mate up to isomorphism.
- A graph G is said to be determined by the Laplacian spectrum (simply, DLS) if G has no L-cospectral mate up to isomorphism.
- A graph G is said to be determined by the adjacency spectrum (simply, DAS) if G has no A-cospectral mate up to isomorphism.
- A graph G is said to be determined by the Laplacian spectrum (simply, DLS) if G has no L-cospectral mate up to isomorphism.
- A graph G is said to be determined by the signless Laplacian spectrum (simply, DQS) if G has no Q-cospectral mate up to isomorphism.

Fig. 1, 2 and 3 gives the smallest (with respect to order and size) pair of cospectral, L-cospectral and Q-cospectral graphs. Thus

- Graphs having less than five vertices are DS.

Fig. 1, 2 and 3 gives the smallest (with respect to order and size) pair of cospectral, L-cospectral and Q-cospectral graphs. Thus

- Graphs having less than five vertices are DS.
- Graphs having less than six vertices are DLS.

Fig. 1, 2 and 3 gives the smallest (with respect to order and size) pair of cospectral, L-cospectral and Q-cospectral graphs. Thus

- Graphs having less than five vertices are DS.
- Graphs having less than six vertices are DLS.
- Graphs having less than four vertices are $D Q S$.

Which graphs are determined by their spectra?

Which graphs are determined by their spectra?

This is a classical question posed by Günthard and Primas [14] in the year 1956 .

Which graphs are determined by their spectra?

This is a classical question posed by Günthard and Primas [14] in the year 1956 .

The motivation for the question comes from Chemistry (Hückel Molecular Theory).

Which graphs are determined by their spectra?
This is a classical question posed by Günthard and Primas [14] in the year 1956.

The motivation for the question comes from Chemistry (Hückel Molecular Theory).

In 2003, Dam and Haemers gave a survey of (partial) answers to the question, see [9]. Since then the problem has attracted many researchers and in recent years several papers on this problem have been published.

Which graphs are determined by their spectra?

This is a classical question posed by Günthard and Primas [14] in the year 1956 .

The motivation for the question comes from Chemistry (Hückel Molecular Theory).

In 2003, Dam and Haemers gave a survey of (partial) answers to the question, see [9]. Since then the problem has attracted many researchers and in recent years several papers on this problem have been published.

Developments on spectral characterizations of graphs with respect to adjacency spectrum and (signless) Laplacian spectrum until 2008 are reported in the following two survey articles by Dam and Haemers.
"Which graphs are determined by their spectra" Linear
Algebra Appl., vol.
373, pp. 241-272, 2003.

- "Which graphs are determined by their spectra" Linear
Algebra Appl., vol.
373, pp. 241-272, 2003.
- Developments on spectral characterizations of graphs," Discrete Math., vol. 309, pp. 576-586, 2009.
- "Which graphs are determined by their spectra" Linear Algebra Appl., vol. 373, pp. 241-272, 2003.
- Developments on spectral characterizations of graphs," Discrete Math., vol. 309, pp. 576-586, 2009.

Which graphs are determined by their spectrum?
Edwin R, van Dam ${ }^{1}$, Willem H. Haemers ${ }^{*}$

Reseived 30 April 2002 ; aceepled 10 March 2003
Sutremitued by B. Shakkr

Abstract
For almost all graphs the answer to the question in the tite is still unknown. Here we survey the cases for which the answer is known. Not only the adjacency matrix, but also other lypes © 2003 Elsevier Inc. All rights reserved.
Koyuonde: Spectra of gruphis Eigemalass; Cospectral graphts: Distance-regalar graphis

1. Introduction

Consider the two graphs with their adjacency matrices, shown in Fig. 1. It is easily checked that bosh matrices have spectrum
$\left[[2]^{1},[0]^{3},[-2]^{1}\right]$
(exponents indicate multiplicities). This is the usual example of non-isomorphic cospectral graphs first given by Cvetkovic [19]. For convenience we call this couple the Saltire pair (since the two pictures superpesed give the Scottish flag: Saltire). For graphs on less than five vertices, no pair with cospectral adjacency matrices exists, so each of these graphs is determined by its spectrum.
We abbreviate 'determined by the spectrum' to DS. The question 'which graphs are DS?' goes back for about half a century, and originates from chemistry. In 1956

${ }^{*}$ Canesponiding author.

 Acadenyy of Arts and Sciences.
$0024-3795 / 5$-see front matter o 2003 Elsevie Inc. All riphts reserved.
doi:10. 1016isocot-3795(133)00483.-X

Developments on spectral characterizations of graphs
Edwin R. van Dam. Willem H. Haemers

article info	Abstract
Matrosuy	Inlek van Dum WhB Hemers. Which graphs are determined by their sectram? Unear Alpora Appl 373 [2033, 241-272] we gave 1 sirvey of answen to the question of Furftermore. we fomulited some rexarch questons on the topic in the mearcime, some of these questions have been (partially) answered in the present puper we y ive a suryey of these and other derelopmers. 0 2008 Ekevier B.V. All rizhts reserved.
Raxcred 10 May 2000	
Sknuct	

\longrightarrow

1. Introdiuction

 personal communications
We do pot only consider the spectrum of the atjacency matrix, but also deal with the Laplacin marrix, the (so-calleed)

 see Section 31 ar both (see Seetion 6.1). For the signiess Lapladian we know of one new result (see Seetion 3 . However, the
 Far mary other graphis.

The following is one of the basic lemma widely used in the study of characterization of graphs with respect to spectrum (adjacency spectrum and (signless) Laplacian spectrum).

The following is one of the basic lemma widely used in the study of characterization of graphs with respect to spectrum (adjacency spectrum and (signless) Laplacian spectrum).

Lemma [9] For the adjacency matrix, the Laplacian matrix and the signless Laplacian matrix of a graph G, the following can be deduced from the spectrum:

- The number of vertices.
- The number of edges.
- Whether G is regular.

The following is one of the basic lemma widely used in the study of characterization of graphs with respect to spectrum (adjacency spectrum and (signless) Laplacian spectrum).

Lemma [9] For the adjacency matrix, the Laplacian matrix and the signless Laplacian matrix of a graph G, the following can be deduced from the spectrum:

- The number of vertices.
- The number of edges.
- Whether G is regular.

For the adjacency matrix the following follows from the spectrum:

- The number of closed walks of any fixed length.
- Whether G is bipartite.

The following is one of the basic lemma widely used in the study of characterization of graphs with respect to spectrum (adjacency spectrum and (signless) Laplacian spectrum).

Lemma [9] For the adjacency matrix, the Laplacian matrix and the signless Laplacian matrix of a graph G, the following can be deduced from the spectrum:

- The number of vertices.
- The number of edges.
- Whether G is regular.

For the adjacency matrix the following follows from the spectrum:

- The number of closed walks of any fixed length.
- Whether G is bipartite.

For the Laplacian matrix the following follows from the spectrum:

- The number of components.
- The number of spanning trees.

Let M be a Hermitian matrix of order m and let $\theta_{1}(M) \geq \theta_{2}(M) \geq$ $\cdots \geq \theta_{m}(M)$ be its eigenvalues.

Let M be a Hermitian matrix of order m and let $\theta_{1}(M) \geq \theta_{2}(M) \geq$
$\cdots \geq \theta_{m}(M)$ be its eigenvalues.
Theorem [17] Let M be a Hermitian matrix of order n.

- Interlacing: If M_{k} is a principal submatrix of M of order k with $1 \leq k \leq n$, then for $1 \leq i \leq k, \theta_{n-k+i}(M) \leq \theta_{i}\left(M_{k}\right) \leq \theta_{i}(M)$.

Let M be a Hermitian matrix of order m and let $\theta_{1}(M) \geq \theta_{2}(M) \geq$ $\cdots \geq \theta_{m}(M)$ be its eigenvalues.

Theorem [17] Let M be a Hermitian matrix of order n.

- Interlacing: If M_{k} is a principal submatrix of M of order k with $1 \leq k \leq n$, then for $1 \leq i \leq k, \theta_{n-k+i}(M) \leq \theta_{i}\left(M_{k}\right) \leq \theta_{i}(M)$.
- Weyl's inequality: If $M=N+P$, where N and P are Hermitian matrices of order n. Then for $1 \leq i, j \leq n$, we have
- $\theta_{i}(N)+\theta_{j}(P) \leq \theta_{i+j-n}(M)(i+j>n) ;$
- $\theta_{i+j-1}(M) \leq \theta_{i}(N)+\theta_{j}(P)(i+j-1 \leq n)$.

Which graphs are DAS?

Which graphs are DAS?

Proposition [9] The complete graph K_{n},

Which graphs are DAS?

Proposition [9] The complete graph K_{n}, the complete bipartite graph $K_{m, m}$

Which graphs are DAS?

Proposition [9] The complete graph K_{n}, the complete bipartite graph $K_{m, m}$ and the Cycle graph C_{n}

Which graphs are DAS?

Proposition [9] The complete graph K_{n}, the complete bipartite graph $K_{m, m}$ and the Cycle graph C_{n} are determined by the adjacency spectrum.

Note that the graph $K_{4,4} \cup 2 K_{1}$ and $K_{8,2}$ are cospectral.

The following theorem is proved in [9].
Theorem
The Path graph P_{n} is determined by the adjacency spectrum.

The following theorem is proved in [9].
Theorem
The Path graph P_{n} is determined by the adjacency spectrum.
Proof: Let G be a graph cospectral with P_{n}.

The following theorem is proved in [9].
Theorem
The Path graph P_{n} is determined by the adjacency spectrum.
Proof: Let G be a graph cospectral with P_{n}.
Spectrum of P_{n} is $2 \cos \left(\frac{j \pi}{n+1}\right), j=1,2, \ldots, n$.

The following theorem is proved in [9].
Theorem
The Path graph P_{n} is determined by the adjacency spectrum.
Proof: Let G be a graph cospectral with P_{n}.

- Spectrum of P_{n} is $2 \cos \left(\frac{j \pi}{n+1}\right), j=1,2, \ldots, n$.
$\Rightarrow \lambda_{1}(G)<2$.

The following theorem is proved in [9].
Theorem
The Path graph P_{n} is determined by the adjacency spectrum.
Proof: Let G be a graph cospectral with P_{n}.

- Spectrum of P_{n} is $2 \cos \left(\frac{j \pi}{n+1}\right), j=1,2, \ldots, n$.
$\Rightarrow \lambda_{1}(G)<2$.
\therefore By interlacing theorem, G has no cycles (because $\lambda_{1}\left(C_{k}\right)=2$).

The following theorem is proved in [9].
Theorem
The Path graph P_{n} is determined by the adjacency spectrum.
Proof: Let G be a graph cospectral with P_{n}.

- Spectrum of P_{n} is $2 \cos \left(\frac{j \pi}{n+1}\right), j=1,2, \ldots, n$.
$\Rightarrow \lambda_{1}(G)<2$.
\therefore By interlacing theorem, G has no cycles (because $\lambda_{1}\left(C_{k}\right)=2$).
- Thus G is a forest. Further, since G has $n-1$ edges. G must be a tree.

The following theorem is proved in [9].
Theorem
The Path graph P_{n} is determined by the adjacency spectrum.
Proof: Let G be a graph cospectral with P_{n}.

- Spectrum of P_{n} is $2 \cos \left(\frac{j \pi}{n+1}\right), j=1,2, \ldots, n$.
$\Rightarrow \lambda_{1}(G)<2$.
\therefore By interlacing theorem, G has no cycles (because $\lambda_{1}\left(C_{k}\right)=2$).
Thus G is a forest. Further, since G has $n-1$ edges. G must be a tree.
$>$ Claim: $\Delta(G) \leq 2$.

The following theorem is proved in [9].
Theorem
The Path graph P_{n} is determined by the adjacency spectrum.
Proof: Let G be a graph cospectral with P_{n}.
Spectrum of P_{n} is $2 \cos \left(\frac{j \pi}{n+1}\right), j=1,2, \ldots, n$.
$\Rightarrow \lambda_{1}(G)<2$.
\therefore By interlacing theorem, G has no cycles (because $\lambda_{1}\left(C_{k}\right)=2$).
Thus G is a forest. Further, since G has $n-1$ edges. G must be a tree.

- Claim: $\Delta(G) \leq 2$.
- Since $\lambda_{1}\left(K_{1,4}\right)=2$ and $\left.\lambda_{1}(G)\right)<2$.

The following theorem is proved in [9].
Theorem
The Path graph P_{n} is determined by the adjacency spectrum.
Proof: Let G be a graph cospectral with P_{n}.
Spectrum of P_{n} is $2 \cos \left(\frac{j \pi}{n+1}\right), j=1,2, \ldots, n$.
$\Rightarrow \lambda_{1}(G)<2$.
\therefore By interlacing theorem, G has no cycles (because $\lambda_{1}\left(C_{k}\right)=2$).
Thus G is a forest. Further, since G has $n-1$ edges. G must be a tree.

- Claim: $\Delta(G) \leq 2$.
- Since $\lambda_{1}\left(K_{1,4}\right)=2$ and $\left.\lambda_{1}(G)\right)<2$.By interlacing theorem, it follows that $K_{1,4}$ is a forbidden subgraph of G.

The following theorem is proved in [9].
Theorem
The Path graph P_{n} is determined by the adjacency spectrum.
Proof: Let G be a graph cospectral with P_{n}.

- Spectrum of P_{n} is $2 \cos \left(\frac{j \pi}{n+1}\right), j=1,2, \ldots, n$.
$\Rightarrow \lambda_{1}(G)<2$.
\therefore By interlacing theorem, G has no cycles (because $\lambda_{1}\left(C_{k}\right)=2$).
Thus G is a forest. Further, since G has $n-1$ edges. G must be a tree.
- Claim: $\Delta(G) \leq 2$.
- Since $\lambda_{1}\left(K_{1,4}\right)=2$ and $\left.\lambda_{1}(G)\right)<2$. By interlacing theorem, it follows that $K_{1,4}$ is a forbidden subgraph of G.
- Thus $\Delta(G) \leq 3$.
- If G has at least two vertices of degree 3. Then G has the following graph as its subgraph.
- If G has at least two vertices of degree 3. Then G has the following graph as its subgraph.

- If G has at least two vertices of degree 3. Then G has the following graph as its subgraph.

- This is not possible, because the graph shown in the above figure has 2 as its eigenvalue.
- If G has at least two vertices of degree 3. Then G has the following graph as its subgraph.

- This is not possible, because the graph shown in the above figure has 2 as its eigenvalue.
- If G has one vertex of degree 3 . Then G must be isomorphic to the graph shown in the following figure.

- Now one can check that number of closed walks of length 4 in P_{n} is not same as that of G, a contradiction.
- Now one can check that number of closed walks of length 4 in P_{n} is not same as that of G, a contradiction.
- Thus $\Delta(G)=2$.
- Now one can check that number of closed walks of length 4 in P_{n} is not same as that of G, a contradiction.
- Thus $\Delta(G)=2$.
$\therefore G$ is a tree on n vertices and $\Delta(G)=2$.
- Now one can check that number of closed walks of length 4 in P_{n} is not same as that of G, a contradiction.
- Thus $\Delta(G)=2$.
$\therefore G$ is a tree on n vertices and $\Delta(G)=2$.
$>$ Hence $G \cong P_{n}$. This completes the proof.
- Now one can check that number of closed walks of length 4 in P_{n} is not same as that of G, a contradiction.
- Thus $\Delta(G)=2$.
$\therefore G$ is a tree on n vertices and $\Delta(G)=2$.
$>$ Hence $G \cong P_{n}$. This completes the proof.
The following result is due to Doob and Haemers.
Theorem [12] The complement of the path graph is determined by its adjacency spectrum.

Graphs with small spectral radius that are DAS

- In [33], Smith determined all connected graphs with spectral radius at most 2. This includes the cycle C_{n}, P_{n} and the graphs shown in the following figure.

Graphs with small spectral radius that are DAS

- In [33], Smith determined all connected graphs with spectral radius at most 2. This includes the cycle C_{n}, P_{n} and the graphs shown in the following figure.

- In [32], Shen et al. proved that all connected graphs with spectral radius less than 2 are DAS.

Graphs with small spectral radius that are DAS

- In [33], Smith determined all connected graphs with spectral radius at most 2. This includes the cycle C_{n}, P_{n} and the graphs shown in the following figure.

- In [32], Shen et al. proved that all connected graphs with spectral radius less than 2 are DAS.
- Among all connected graphs with spectral radius 2 , the cycle graph, \bar{E}_{7}, \bar{E}_{8} are DAS.

Thus we have the following result. Theorem [9] All connected graphs with spectral radius at most 2 are DAS, except for the graphs shown in the following figure.

Thus we have the following result.
Theorem [9] All connected graphs with spectral radius at most 2 are DAS, except for the graphs shown in the following figure.

Thus we have the following result.
Theorem [9] All connected graphs with spectral radius at most 2 are DAS, except for the graphs shown in the following figure.

In [5], Brouwer and Neumaier classified all graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$ and in [13], Ghareghani et al. showed that all these graphs are DAS. i.e.,

Thus we have the following result.
Theorem [9] All connected graphs with spectral radius at most 2 are DAS, except for the graphs shown in the following figure.

In [5], Brouwer and Neumaier classified all graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$ and in [13], Ghareghani et al. showed that all these graphs are DAS. i.e.,
Theorem [13] All connected graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$ are DAS.

Some special graphs that are DAS
Theorem (R. Boulet and B. Jouve [3]) The lollipop graph is DAS.
Adjacency spectral characterization of lollipop graphs were first consider by Heamers, Liu and Zhang in [15] and it was shown that the lollipop graph with odd cycle is DAS.

Theorem [34] The kite graph is DAS.

Theorem［4］The corona product of an odd cycle and an isolated vertex is DAS．

Theorem [4] The corona product of an odd cycle and an isolated vertex is DAS.

Theorem [27] The sandglass graph is DAS.

Theorem [4] The corona product of an odd cycle and an isolated vertex is DAS.

Theorem [27] The sandglass graph is DAS.

Theorem [21] The graph $K_{n} \backslash P_{k}$ is DAS. In 2014, Cámara and Haemers [6] conjectured that $K_{n} \backslash P_{k}$ is DAS and they succeeded in proving it for $2 \leq k \leq 6$.

Which graphs are DLS?

Which graphs are DLS?

Simple graphs that are DLS:

Which graphs are DLS?

Simple graphs that are DLS:

- The complete graph K_{n}.

Which graphs are DLS?

Simple graphs that are DLS:

- The complete graph K_{n}.
- The path graph P_{n}.

Which graphs are DLS?

Simple graphs that are DLS:

- The complete graph K_{n}.
- The path graph P_{n}.
- The cycle C_{n}.

Which graphs are DLS?

Simple graphs that are DLS:

- The complete graph K_{n}.
- The path graph P_{n}.
- The cycle C_{n}.
- The complete bipartite graph $K_{m, m}$.

Which graphs are DLS?

Simple graphs that are DLS:

- The complete graph K_{n}.
- The path graph P_{n}.
- The cycle C_{n}.
- The complete bipartite graph $K_{m, m}$.

Lemma [7] Let G be a graph on n vertices then the Laplacian spectra of $\bar{G}=\left\{n-\mu_{1}(G), n-\mu_{2}(G), \ldots, n-\mu_{n-1}(G), 0\right\}$.

Which graphs are DLS?

Simple graphs that are DLS:

- The complete graph K_{n}.
- The path graph P_{n}.
- The cycle C_{n}.
- The complete bipartite graph $K_{m, m}$.

Lemma [7] Let G be a graph on n vertices then the Laplacian spectra of $\bar{G}=\left\{n-\mu_{1}(G), n-\mu_{2}(G), \ldots, n-\mu_{n-1}(G), 0\right\}$.
Proposition [10] A graph G is $D L S$ if and only if \bar{G} is $D L S$.

Which graphs are DLS?

Simple graphs that are DLS:

- The complete graph K_{n}.
- The path graph P_{n}.
- The cycle C_{n}.
- The complete bipartite graph $K_{m, m}$.

Lemma [7] Let G be a graph on n vertices then the Laplacian spectra of $\bar{G}=\left\{n-\mu_{1}(G), n-\mu_{2}(G), \ldots, n-\mu_{n-1}(G), 0\right\}$.
Proposition [10] A graph G is $D L S$ if and only if \bar{G} is $D L S$.
Corollary The complement graph of path graph is DLS.

The lollipop graph is DLS.

The lollipop graph is DLS.

The lollipop graph, denoted by $H_{n, p}$ is obtained by appending a cycle C_{p} to a pendant vertex of a path P_{n-p}.

The lollipop graph is DLS.

The lollipop graph, denoted by $H_{n, p}$ is obtained by appending a cycle C_{p} to a pendant vertex of a path P_{n-p}.
Lemma [19] Let G be a graph on n vertices. Then
$\Delta(G)+1 \leq \mu_{1} \leq \max \left\{\frac{d_{u}\left(d_{u}+m_{u}\right)+d_{v}\left(d_{v}+m_{v}\right)}{d_{u}+d_{v}}, u v \in E(G)\right\}$
where $\Delta(G)$ denotes the maximum vertex degree of G, μ_{1} denotes the largest Laplacian eigenvalue of G, m_{v} denotes the average of the degrees of the vertices adjacent to vertex v in G.

The lollipop graph is DLS.

The lollipop graph, denoted by $H_{n, p}$ is obtained by appending a cycle C_{p} to a pendant vertex of a path P_{n-p}.
Lemma [19] Let G be a graph on n vertices. Then
$\Delta(G)+1 \leq \mu_{1} \leq \max \left\{\frac{d_{u}\left(d_{u}+m_{u}\right)+d_{v}\left(d_{v}+m_{v}\right)}{d_{u}+d_{v}}, u v \in E(G)\right\}$
where $\Delta(G)$ denotes the maximum vertex degree of G, μ_{1} denotes the largest Laplacian eigenvalue of G, m_{v} denotes the average of the degrees of the vertices adjacent to vertex v in G.

Theorem [15] The lollipop graph $H_{n, p}$ is $L D S$.

The lollipop graph is DLS.

The lollipop graph, denoted by $H_{n, p}$ is obtained by appending a cycle C_{p} to a pendant vertex of a path P_{n-p}.
Lemma [19] Let G be a graph on n vertices. Then
$\Delta(G)+1 \leq \mu_{1} \leq \max \left\{\frac{d_{u}\left(d_{u}+m_{u}\right)+d_{v}\left(d_{v}+m_{v}\right)}{d_{u}+d_{v}}, u v \in E(G)\right\}$
where $\Delta(G)$ denotes the maximum vertex degree of G, μ_{1} denotes the largest Laplacian eigenvalue of G, m_{V} denotes the average of the degrees of the vertices adjacent to vertex v in G.

Theorem [15] The lollipop graph $H_{n, p}$ is $L D S$.
Proof Let G be a graph L-cospectral with $H_{n, p}$.

The lollipop graph is DLS.

The lollipop graph, denoted by $H_{n, p}$ is obtained by appending a cycle C_{p} to a pendant vertex of a path P_{n-p}.
Lemma [19] Let G be a graph on n vertices. Then
$\Delta(G)+1 \leq \mu_{1} \leq \max \left\{\frac{d_{u}\left(d_{u}+m_{u}\right)+d_{v}\left(d_{v}+m_{v}\right)}{d_{u}+d_{v}}, u v \in E(G)\right\}$
where $\Delta(G)$ denotes the maximum vertex degree of G, μ_{1} denotes the largest Laplacian eigenvalue of G, m_{V} denotes the average of the degrees of the vertices adjacent to vertex v in G.

Theorem [15] The lollipop graph $H_{n, p}$ is $L D S$.
Proof Let G be a graph L-cospectral with $H_{n, p}$.
$>$ Using the above lemma, we get $\mu_{1}\left(H_{n, p}\right) \leq 4.8$. Thus $\mu_{1}(G) \leq 4.8$.
∇ Using the above lemma, we get $\mu_{1}\left(H_{n, p}\right) \leq 4.8$. Thus $\mu_{1}(G) \leq 4.8$. So, from the left inequality of the above lemma, we see that $\Delta(G) \leq 3$.
\downarrow Using the above lemma, we get $\mu_{1}\left(H_{n, p}\right) \leq 4.8$. Thus $\mu_{1}(G) \leq 4.8$. So, from the left inequality of the above lemma, we see that $\Delta(G) \leq 3$.
$>$ Let x, y and z be the number of vertices of G of degree 1,2 , and 3 , respectively. Since the order n, the edges $(=n)$ and the sum $\sum_{i=1}^{n} d_{i}^{2}(=4(n-2)+9+1)$ are determined by the Laplacian spectrum, we must have
\downarrow Using the above lemma, we get $\mu_{1}\left(H_{n, p}\right) \leq 4.8$. Thus $\mu_{1}(G) \leq 4.8$. So, from the left inequality of the above lemma, we see that $\Delta(G) \leq 3$.
Let x, y and z be the number of vertices of G of degree 1,2 , and 3 , respectively. Since the order n, the edges $(=n)$ and the sum $\sum_{i=1}^{n} d_{i}^{2}(=4(n-2)+9+1)$ are determined by the Laplacian spectrum, we must have

$$
\begin{aligned}
x+y+z & =n \\
x+2 y+3 y & =2 n \\
x+4 y+9 y & =4(n-2)+9+1
\end{aligned}
$$

- Solving the above system of equations,
$>$ Using the above lemma, we get $\mu_{1}\left(H_{n, p}\right) \leq 4.8$. Thus $\mu_{1}(G) \leq 4.8$. So, from the left inequality of the above lemma, we see that $\Delta(G) \leq 3$.
- Let x, y and z be the number of vertices of G of degree 1,2 , and 3 , respectively. Since the order n, the edges $(=n)$ and the sum $\sum_{i=1}^{n} d_{i}^{2}(=4(n-2)+9+1)$ are determined by the Laplacian spectrum, we must have

$$
\begin{aligned}
x+y+z & =n \\
x+2 y+3 y & =2 n \\
x+4 y+9 y & =4(n-2)+9+1
\end{aligned}
$$

- Solving the above system of equations, we get $x=1$, $y=n-2$ and $z=1$.
- Thus $G \cong H_{n, q}$.
$>$ Using the above lemma, we get $\mu_{1}\left(H_{n, p}\right) \leq 4.8$. Thus $\mu_{1}(G) \leq 4.8$. So, from the left inequality of the above lemma, we see that $\Delta(G) \leq 3$.
$>$ Let x, y and z be the number of vertices of G of degree 1,2 , and 3 , respectively. Since the order n, the edges $(=n)$ and the sum $\sum_{i=1}^{n} d_{i}^{2}(=4(n-2)+9+1)$ are determined by the Laplacian spectrum, we must have

$$
\begin{aligned}
x+y+z & =n \\
x+2 y+3 y & =2 n \\
x+4 y+9 y & =4(n-2)+9+1
\end{aligned}
$$

- Solving the above system of equations, we get $x=1$, $y=n-2$ and $z=1$.
- Thus $G \cong H_{n, q}$.
$>$ Now since the number of spanning trees is determined by the Laplacian spectrum, we must have $p=q$.
$>$ Using the above lemma, we get $\mu_{1}\left(H_{n, p}\right) \leq 4.8$. Thus $\mu_{1}(G) \leq 4.8$. So, from the left inequality of the above lemma, we see that $\Delta(G) \leq 3$.
Let x, y and z be the number of vertices of G of degree 1,2 , and 3 , respectively. Since the order n, the edges $(=n)$ and the sum $\sum_{i=1}^{n} d_{i}^{2}(=4(n-2)+9+1)$ are determined by the Laplacian spectrum, we must have

$$
\begin{aligned}
x+y+z & =n \\
x+2 y+3 y & =2 n \\
x+4 y+9 y & =4(n-2)+9+1
\end{aligned}
$$

- Solving the above system of equations, we get $x=1$, $y=n-2$ and $z=1$.
- Thus $G \cong H_{n, q}$.
$>$ Now since the number of spanning trees is determined by the Laplacian spectrum, we must have $p=q$.
$>$ Hence $G \cong H_{n, p}$. This completes the proof.

Some other classes of graphs that are studied for Laplacian spectral characterization are Starlike trees [29]; double starlike trees [24]; multi-fan graphs in [22]; complete-split graph [11], butter-fly graph [20], etc.

Which graphs are DQS?

Lemma [8] If G is a bipartite graph then its Q-spectrum is same as L-spectrum.

Which graphs are DQS?

Lemma [8] If G is a bipartite graph then its Q-spectrum is same as L-spectrum.

Theorem The path graph is $D Q S$.
Proof Let G be a graph Q-cospectral with P_{n}.

Which graphs are DQS?

Lemma [8] If G is a bipartite graph then its Q-spectrum is same as L-spectrum.

Theorem The path graph is $D Q S$.
Proof Let G be a graph Q-cospectral with P_{n}.

- The Q-spectrum of P_{n} is $2+2 \cos \left(\frac{i \pi}{n}\right), i=1,2, \ldots, n$.

Which graphs are DQS?

Lemma [8] If G is a bipartite graph then its Q-spectrum is same as L-spectrum.

Theorem The path graph is $D Q S$.
Proof Let G be a graph Q-cospectral with P_{n}.

- The Q-spectrum of P_{n} is $2+2 \cos \left(\frac{i \pi}{n}\right), i=1,2, \ldots, n$.
$>\gamma_{1}(G)<4$.

Which graphs are DQS?

Lemma [8] If G is a bipartite graph then its Q-spectrum is same as L-spectrum.
Theorem The path graph is $D Q S$.
Proof Let G be a graph Q-cospectral with P_{n}.

- The Q-spectrum of P_{n} is $2+2 \cos \left(\frac{i \pi}{n}\right), i=1,2, \ldots, n$.
$>\gamma_{1}(G)<4$.
- Now, if G has a cycle then by interlacing theorem, we get $\gamma_{1}(G) \geq 4$.

Which graphs are DQS?

Lemma [8] If G is a bipartite graph then its Q-spectrum is same as L-spectrum.
Theorem The path graph is $D Q S$.
Proof Let G be a graph Q-cospectral with P_{n}.

- The Q-spectrum of P_{n} is $2+2 \cos \left(\frac{i \pi}{n}\right), i=1,2, \ldots, n$.
$>\gamma_{1}(G)<4$.
- Now, if G has a cycle then by interlacing theorem, we get $\gamma_{1}(G) \geq 4$.
- Thus G is bipartite.

Which graphs are DQS?

Lemma [8] If G is a bipartite graph then its Q-spectrum is same as L-spectrum.
Theorem The path graph is $D Q S$.
Proof Let G be a graph Q-cospectral with P_{n}.

- The Q-spectrum of P_{n} is $2+2 \cos \left(\frac{i \pi}{n}\right), i=1,2, \ldots, n$.
$>\gamma_{1}(G)<4$.
- Now, if G has a cycle then by interlacing theorem, we get $\gamma_{1}(G) \geq 4$.
- Thus G is bipartite.
- Therefore by above lemma G is L-cospectral with P_{n}.

Which graphs are DQS?

Lemma [8] If G is a bipartite graph then its Q-spectrum is same as L-spectrum.

Theorem The path graph is $D Q S$.
Proof Let G be a graph Q-cospectral with P_{n}.

- The Q-spectrum of P_{n} is $2+2 \cos \left(\frac{i \pi}{n}\right), i=1,2, \ldots, n$.
$>\gamma_{1}(G)<4$.
- Now, if G has a cycle then by interlacing theorem, we get $\gamma_{1}(G) \geq 4$.
- Thus G is bipartite.
- Therefore by above lemma G is L-cospectral with P_{n}.
- Hence $G \cong P_{n}$. (Since P_{n} is $D L S$). This completes the proof.

In literature some special graphs are proved to be determined by the spectra for example the lollipop graph [37], short kite graph [34], complete split graph [11], sun graph [28], fan graph [23], etc.

In literature some special graphs are proved to be determined by the spectra for example the lollipop graph [37], short kite graph [34], complete split graph [11], sun graph [28], fan graph [23], etc.

Recently, (signless) Laplacian spectral characterization of disjoint union of graphs have been studied and also the problem of characterizing join graphs which are determined by their (signless) Laplacian spectra is considered, see $[16,26,30,36,25,1,31]$ for more details.

Recent studies:

Recent studies:

- Which graphs are determined by the distance spectra? [18]

Recent studies:

- Which graphs are determined by the distance spectra? [18]
- Which graphs are determined by the distance (signless) Laplacian spectrum? [2]

References

[1] C. Adiga, K. C. Das, B. R. Rakshith, Some Graphs Determined by their Signless Laplacian (Distance) Spectra, Electronic J. Linear Algebra 36 (2020), 461-472.
[2] M. Aouchiche, P. Hansen, Cospectrality of graphs with respect to distance matrices, Applied Math. and Comput., 325 (2018), 309-321.
[3] R. Boulet, B. Jouve The Lollipop Graph is determined by its spectrum, Electron. J. Combin., 15 (2008), R74.
[4] R. Boulet, Spectral characterizations of sun graphs and broken sun graphs, Discrete Math. Theor. Sci., 11 (2009), 149-160.
[5] A.E. Brouwer, A. Neumaier, The graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$, Linear Algebra Appl., 114/115 (1989), 273-276.
[6] M. Cámara, W. H. Haemers, Spectral characterization of almost complete graphs, Discrete Appl. Math., 176 (2014), 19-23.
[7] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2010.
[8] D. Cvetković, P. Rowlinson, and S. K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl., 423 (2007), 155-171.
[9] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectra?, Linear Algebra Appl. 373 (2003), 241-272.
[10] E.R. van Dam, W.H. Haemers, Developments on spectral characterizations of graphs Discrete Math., 309 (2009), 576-586.
[11] K. C. Das and M. Liu, Complete split graph determined by its (signless) Laplacian spectrum, Discrete Appl. Math. 205 (2016), 45-51.
[12] M. Doob, W. H. Haemers, The complement of the path is determined by its spectrum, Linear Algebra Appl., 356 (2002), 57-65.
[13] N. Ghareghani, G.R. Omidi, B. Tayfeh-Rezaie,Spectral characterization of graphs with index at most $\sqrt{2+\sqrt{5}}$, Linear Algebra Appl., 420 (2007), 483-489.
[14] H. H. Günthard, H. Primas, Zusammenhang von Graphtheorie und Mo-Theotie von Molekeln mit Systemen konjugierter Bindungen, Helv. Chim. Acta, 39 (1956), 1645-1653.
[15] W. H. Haemers, X. Liu, Y. Zhang, Spectral characterizations of lollipop graphs, Linear Algebra Appl. 428 (2008) 2415-2423.
[16] S. Huang, J. Zhou, and C. Bu, Signless Laplacian spectral characterization of graphs with isolated vertices, Filomat 30 (2017), 3689-3696.
[17] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 2012.
[18] Y. L. Jin and X. D. Zhang, Complete multipartite graphs are determined by their distance spectra. Linear Algebra Appl., 448 (2014), 285-291.
[19] J. S. Li, X. D. Zhang, On the Laplacian eigenvalues of a graph, Linear Algebra Appl. 285 (1998) 305-307.
[20] M. Liu, Y. Zhu, H. Shan, and K. C. Das, The spectral characterization of butter fly-like graphs, Linear Algebra Appl. 513 (2017), 55-68.
[21] M. Liu, X. Gu, Spectral characterization of the complete graph removing a path: Completing the proof of Cámara-Haemers Conjecture, Discrete Math., 344 (2021), 112275.
[22] X. Liu, Y. Zhang, and X. Gu, The multi-fan graphs are determined by their Laplacian spectra, Discrete Math. 308 (2008), 4267-4271.
[23] M. Liu, Guangzhou, Y. Yuan, Haikou, K. C. Das, Suwon, The fan graph is determined by its spectra, Czechoslovak Math. J., 70 (145) (2020), 21-31.
[24] X. Liu, Y. Zhang, and P. Lu, One special double starlike graph is determined by its Laplacian spectrum, Appl. Math. Lett. 22 (2008), 435-438.
[25] X. Liu and P. Lu, Signless Laplacian spectral characterization of some joins, Electron. J. Linear Algebra 30 (2014), 443-454.
[26] X. Liu and P. Lu, Signless Laplacian spectral characterization of some joins, Electron. J. Linear Algebra 30 (2014), 443-454.
[27] P. Lu, X. Liu, Z. Yuan, X. Yong, Spectral characterizations of sandglass graphs, Applied Math. Lett., 22 (2009), 1225-1230.
[28] M. Mirzakhah, D. Kiani, The sun graph is determined by its signless Laplacian spectrum, Electron. J. Linear Algebra. 20 (2010) 610-620
[29] G.R. Omidi and K. Tajbakhsh, Starlike trees are determined by their Laplacian spectrum, Linear Algebra Appl. 422 (2007), 654-658.
[30] L. Sun, W. Wang, J. Zhou, and C. Bu, Laplacian spectral characterization of some graph join, Indian J. Pure Appl. Math. 46 (2015), 279-286.
[31] B. R.Rakshith, Signless Laplacian spectral characterization of some disjoint union of graphs. Indian J Pure Appl Math (2021). https://doi.org/10.1007/s13226-021-00032-9
[32] X. Shen, Y. Hou, Y. Zhang, Graph Z_{n} and some graphs related to Z_{n} are determined by their spectrum, Linear Algebra Appl. 404 (2005) 58-68.
[33] J.H. Smith, Some properties of the spectrum of a graph, in: R. Guy, et al. (Eds.), Combinatorial Structures and their Applications (Proc. Conf. Calgary, 1969), Gordon and Breach, New York, 1970, 403-406.
[34] H. Topcu, S. Sorgun, The kite graph is determined by its adjacency spectrum, Applied Math. Comput., 330 (2018), 134-142.
[35] J. Wang, S. Shi, The line graphs of lollipop graphs are determined by their spectra, Linear Algebra Appl., 436 (2012), 2630-2637.
[36] L. Xu and C. He, On the signless Laplacian spectral determination of the join of regular graphs, Discrete Math. Algorithm. Appl. 6 (2014), 1450050.
[37] Y. Zhang, X. Liu, B. Zhang, X. Yong, The lollipop graph is determined by its Q-spectrum, Discrete Math. 309 (2009) 3364-3369.

Thank you

